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In an overcomplete basis, the number of basis vectors is greater than the
dimensionality of the input, and the representation of an input is not a
unique combination of basis vectors. Overcomplete representations have
been advocated because they have greater robustness in the presence of
noise, can be sparser, and can have greater flexibility in matching struc-
ture in the data. Overcomplete codes have also been proposed as a model
of some of the response properties of neurons in primary visual cortex.
Previous work has focused on finding the best representation of a signal
using a fixed overcomplete basis (or dictionary). We present an algorithm
for learning an overcomplete basis by viewing it as probabilistic model of
the observed data. We show that overcomplete bases can yield a better ap-
proximation of the underlying statistical distribution of the data and can
thus lead to greater coding efficiency. This can be viewed as a generaliza-
tion of the technique of independent component analysis and provides a
method for Bayesian reconstruction of signals in the presence of noise and
for blind source separation when there are more sources than mixtures.

1 Introduction

A common way to represent real-valued signals is with a linear superpo-
sition of basis functions. This can be an efficient way to encode a high-
dimensional data space because the representation is distributed. Bases such
as the Fourier or wavelet can provide a useful representation of some sig-
nals, but they are limited because they are not specialized for the signals
under consideration.

An alternative and potentially more general method of signal representa-
tion uses so-called overcomplete bases (also called overcomplete dictionar-
ies), which allow a greater number of basis functions (also called dictionary
elements) than samples in the input signal (Simoncelli, Freeman, Adelson,
& Heeger, 1992; Mallat & Zhang, 1993; Chen, Donoho, & Saunders, 1996).
Overcomplete bases are typically constructed by merging a set of complete

Neural Computation 12, 337–365 (2000) c© 2000 Massachusetts Institute of Technology



338 Michael S. Lewicki and Terrence J. Sejnowski

bases (e.g., Fourier, wavelet, and Gabor), or by adding basis functions to a
complete basis (e.g., adding frequencies to a Fourier basis).

Under an overcomplete basis, the decomposition of a signal is not unique,
but this can offer some advantages. One is that there is greater flexibility
in capturing structure in the data. Instead of a small set of general basis
functions, there is a larger set of more specialized basis functions such that
relatively few are required to represent any particular signal. These can
form more compact representations, because each basis function can de-
scribe a significant amount of structure in the data. For example, if a signal
is largely sinusoidal, it will have a compact representation in a Fourier basis.
Similarly, a signal composed of chirps is naturally represented in a chirp ba-
sis. Combining both of these bases into a single overcomplete basis would
allow compact representations for both types of signals (Coifman & Wick-
erhauser, 1992; Mallat & Zhang, 1993; Chen et al., 1996). It is also possible to
obtain compact representations when the overcomplete basis contains a sin-
gle class of basis functions. An overcomplete Fourier basis, with more than
the minimum number of sinusoids, can compactly represent signals com-
posed of small numbers of frequencies, achieving superresolution (Chen et
al., 1996). An additional advantage of some overcomplete representations is
increased stability of the representation in response to small perturbations
of the signal (Simoncelli et al., 1992).

Unlike the case in a complete basis, where signal decomposition is well
defined and unique, finding the “best” representation in terms of an over-
complete basis is a challenging problem. It requires both an objective for
decomposition and an algorithm that can achieve that objective. Decompo-
sition can be expressed as finding a solution to

x = As , (1.1)

where x is the signal, A is a (nonsquare) matrix of basis functions (vectors),
and s is the vector of coefficients, that is, the representation of the signal.
Developing efficient algorithms to solve this equation is an active area of
research. One approach to removing the degeneracy in equation 1.1 is to
place a constraint on s (Daubechies, 1990; Chen et al., 1996), for example,
by finding s satisfying equation 1.1 with minimum L1 norm. A different
approach is to construct iteratively a sparse representation of the signal
(Coifman & Wickerhauser, 1992; Mallat & Zhang, 1993). In some of these
approaches, the decomposition can be a nonlinear function of the data.

Although overcomplete bases can be more flexible in terms of how the
signal is represented, there is no guarantee that hand-selected basis vectors
will be well matched to the structure in the data. Ideally, we would like the
basis itself to be adapted to the data, so that for signal class of interest, each
basis function captures a maximal amount of structure.

One recent success along these lines was developed by Olshausen and
Field (1996, 1997) from the viewpoint of learning sparse codes. When adapted
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to natural images, the basis functions shared many properties with neu-
rons in primary visual cortex, suggesting that overcomplete representations
might a useful model for neural population codes.

In this article, we present an algorithm for learning an overcomplete
basis by viewing it as a probabilistic model of the observed data. This ap-
proach provides a natural solution to decomposition (see equation 1.1) by
finding the maximum a posteriori representation of the data. The prior dis-
tribution on the basis function coefficients removes the redundancy in the
representation and leads to representations that are sparse and are a nonlin-
ear function of the data. The probabilistic approach to decomposition also
leads to a natural method of denoising.

From this model, we derive a simple and robust learning algorithm by
maximizing the data likelihood over the basis functions. This work general-
izes the algorithm of Olshausen and Field (1996) by deriving a algorithm for
learning overcomplete bases from a direct approximation to the data like-
lihood. This allows learning for arbitrary input noise levels, allows for the
objective comparison of different models, and provides a way to estimate a
model’s coding efficiency. We also show that overcomplete representations
can provide a better and more efficient representation, because they can
better approximate the underlying statistical density of the input data. This
also generalizes the technique of independent component analysis (Jutten &
Hérault, 1991; Comon, 1994; Bell & Sejnowski, 1995) and provides a method
for the identification of more sources than mixtures.

2 Model

We assume that each data vector, x = x1, . . . , xL, can be described with an
overcomplete linear basis plus additive noise,

x = As+ ε, (2.1)

where A is an L×M matrix with M > L. We assume gaussian additive noise,
ε. The data likelihood is

log P(x|A, s) ∝ − 1
2σ 2 (x−As)2, (2.2)

where σ 2 is the noise variance.
One criticism of overcomplete representations is that they are redundant—

a given data point can have many possible representations—but this redun-
dancy can be removed by a proper choice for the prior probability of the
basis coefficients, P(s), which specifies the probability of the alternative rep-
resentations. This density determines how the underlying statistical struc-
ture is modeled and the nature of the representation. Standard approaches
to signal representation do not specify a prior for the coefficients, because



340 Michael S. Lewicki and Terrence J. Sejnowski

for most complete bases and assuming zero noise, the representation of
the signal is unique. If A is invertible, the decomposition of the signal x is
given by s = A−1x. Because A−1 is expensive to compute, there is strong
incentive to find basis matrices that are easy to invert, such as restricting
the basis functions to be orthogonal or further restricting the basis func-
tions to those for which there are fast algorithms, such as Fourier or wavelet
analysis.

A more general approach is afforded in the probabilistic formulation.
The parameter values of the internal states are found by maximizing the
posterior distribution of s,

ŝ = argmax
s

P(s|x,A) = argmax
s

P(x|A, s)P(s), (2.3)

where ŝ is the most probable decomposition of the signal. This formulation
of the problem offers the advantage that the model can fit more general
types of distributions. For simplicity, we assume independence of the co-
efficients: P(s) = ∏

m P(sm). Another advantage of this formulation is that
the process of finding the most probable representation determines the best
representation for the noise level defined by σ . This automatically performs
“denoising” in that s encodes the underlying signal without noise. The noise
level can be set to arbitrary levels, including zero. It is also possible to use
Bayesian methods to infer the most probable noise level, but this will not
be pursued here.

2.1 The Relation Between the Prior and the Representation. Figure 1
shows how different priors induce different representations of the data. A
standard choice might be a gaussian prior (equivalent to factor analysis), but
this yields no advantage to having an overcomplete representation because
the underlying assumption is still that the data are gaussian. An alternative
choice, advocated by some authors (Field, 1994; Olshausen & Field, 1996;
Chen et al., 1996), is to use priors that assume sparse representations. This
is accomplished by priors that have high kurtosis, such as the Laplacian,
P(sm) ∝ exp(−θ |sm|). Compared to a gaussian, this distribution puts greater
weight on values close to zero, and as result the representations are sparser—
they have a greater number of small-valued coefficients. For overcomplete
bases, we expect a priori that the representation will be sparse, because
only L out of M nonzero coefficients are needed to represent arbitrary L-
dimensional input patterns.

In the case of zero noise and P(s) gaussian, maximizing equation 2.3 is
equivalent to mins ||s||2 subject to x = As. The solution can be obtained with
the pseudoinverse, s = A+x, and is a linear function of A and s. In the case
of zero noise and P(s) Laplacian, maximizing equation 2.3 is equivalent to
mins ||s||1 subject to x = As. Unlike the gaussian prior, this solution cannot
be obtained by a simple linear operation.
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Figure 1: Different priors induce different representations. (a) The data distri-
bution is two-dimensional and has three main arms. The overlayed axes form
an overcomplete representation. (b, c) Optimal scaled basis vectors for the data
point x under a gaussian and Laplacian prior, respectively. Assuming low noise,
a gaussian for P(s) is equivalent to finding s with minimum L2 norm such that
x = As. The solution is given by the pseudoinverse s = A+x and is a linear
function of the data. A Laplacian prior (P(sm) ∝ exp[−θ |sm|]) finds s with min-
imum L1 norm. This is a nonlinear operation that essentially selects a subset
of basis vectors to represent the data (Chen et al., 1996), so that the resulting
representation is sparse. (d) A 64-sample segment of natural speech was fit to
a 2× overcomplete Fourier representation (128 basis functions) (see section 7).
The plot shows rank-order distribution of the coefficients of s under a gaussian
prior (dashed) and a Laplacian prior (solid). Under a gaussian prior, nearly all
of the coefficients in the solution are nonzero, whereas far fewer are nonzero
under a Laplacian prior.

3 Inferring the Internal State

A general approach for optimizing s in the case of finite noise (ε > 0) and
nongaussian P(s) is to use the gradient of the log posterior in an optimiza-
tion algorithm (Daugman, 1988; Olshausen & Field, 1996). A suitable initial
condition is s = ATx or s = A+x.
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An alternative method, which can be used when the prior is Laplacian
and ε = 0, is to view the problem as a linear program (Chen et al., 1996):

min cT|s| subject to As = x. (3.1)

Letting c = (1, . . . , 1), the objective function in the linear program, cT|s| =∑
m |sm|, corresponds to maximizing the log posterior likelihood under a

Laplacian prior. This can be converted to a standard linear program (with
only positive coefficients) by separating positive and negative coefficients.
Making the substitutions, s ← [u;v], c ← [1; 1], and A ← [A;−A], equa-
tion 3.1 becomes

min 1T[u;v] subject to [A;−A][u;v] = x, u,v ≥ 0, (3.2)

which replaces the basis vector matrix A with one that contains both positive
and negative copies of the vectors. This separates the positive and negative
coefficients of the solution s into the positive variables u and v, respectively.
This can be solved efficiently and exactly with interior point linear program-
ming methods (Chen et al., 1996). Quadratic programming approaches to
this type of problem have also recently been suggested (Osuna, Freund, &
Girosi, 1997) for similar problems.

We have used both the linear programming and gradient-based methods.
The linear programming methods were superior for finding exact solutions
in the case of zero noise. The standard implementation handles only the
noiseless case but can be generalized (Chen et al., 1996). We found gradient-
based methods to be faster in obtaining good approximate solutions. They
also have the advantage that they can easily be adapted for more general
models, such as positive noise levels or different priors.

4 Learning

To derive a learning algorithm we must first specify an appropriate objective
function. A natural objective is to maximize the probability of the data given
the model. For a set of K independent data vectors X = x1, . . . , xK,

P(X|A) =
K∏

k=1

P(xk|A). (4.1)

The probability of a single data point is computed by marginalizing over
the states of the network,

P(xk|A) =
∫

ds P(s)P(xk|A, s). (4.2)

This formulates the problem as one of density estimation and is equivalent
to minimizing the Kullback-Leibler divergence between the model density
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and the distribution of the data. If implementation-related issues such as
synaptic noise are ignored, this is equivalent to the methods of redundancy
reduction and maximizing the mutual information between the input and
the representation (Nadal & Parga, 1994a, 1994b; Cardoso, 1997), which
have been advocated by several researchers (Barlow, 1961, 1989; Hinton
and Sejnowski, 1986; Daugman, 1989; Linsker, 1988; Atick, 1992).

4.1 Fitting Bases to the Data Distribution. To understand how over-
complete representations can yield better approximations to the underlying
density, it is helpful to contrast different techniques for adapting a basis to
a particular data set.

Principal component analysis (PCA) models the data with a multivari-
ate gaussian. This representation is commonly used to find the directions in
the data with largest variation—the principal components—even if the data
do not have gaussian structure. The basis functions are the eigenvectors of
the covariance matrix and are restricted to be orthogonal. An extension of
PCA, called independent component analysis (ICA) (Jutten & Hérault, 1991;
Comon, 1994; Bell & Sejnowski, 1995), allows the learning of nonorthogo-
nal bases for data with nongaussian distributions. ICA is highly effective
in several applications such as blind source separation of mixed audio sig-
nals (Jutten & Hérault, 1991; Bell & Sejnowski, 1995), decomposition of
electroencephalographic (EEG) signals (Makeig, Jung, Bell, Ghahremani, &
Sejnowski, 1996), and the analysis of functional magnetic resonance imaging
(fMRI) data (McKeown et al., 1998). In all of these techniques, the number
of basis vectors is equal to the number of inputs. Because these bases span
the input space, they are complete and are sufficient to represent the data,
but we will see that this representation can be limited.

Figure 2 illustrates how different data densities are modeled by various
approaches in a simple two-dimensional data space. PCA assumes gaussian
structure, but if the data have nongaussian structure, the vectors can point in
directions that contain very few data, and the probability density defined by
the model will predict data where none occur. This means that the model
will underestimate the likelihood of data in the dense regions and over-
estimate it in the sparse regions. By Shannon’s theorem, this will limit the
efficiency of the representation. ICA assumes the coefficients have nongaus-
sian structure and allows the vectors to be nonorthogonal. In this example,
the basis vectors point along high-density regions of the data space. If the
density is more complicated, however, as in the case of the three-armed den-
sity, neither PCA nor ICA captures the underlying structure. Although it is
possible to represent every point in the two-dimensional space with a lin-
ear combination of two vectors, the underlying density cannot be described
without specifying a complicated prior on the basis function coefficients.
An overcomplete basis, however, allows an efficient representation of the
underlying density with simple priors on the basis function coefficients.
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Figure 2: Fitting two-dimensional data with different bases. (a) PCA makes the
assumption that the data have a gaussian distribution. The optimal basis vec-
tors are orthogonal and are not efficient at representing nonorthogonal density
distributions. (b, c) ICA does not require that the vectors be orthogonal and
can fit more general types of densities. (c) Some data distributions, however,
cannot be modeled adequately by either PCA or ICA. (d) Allowing the basis to
be overcomplete allows the three-armed distribution to be fit with simple and
independent distributions for the basis vector coefficients.

4.2 Approximating the Data Probability. In deriving the learning al-
gorithm, the first problem is that, in general, the integral in equation 4.2
is intractable. In the special case of zero noise and a complete represen-
tation (i.e., A is invertible) this integral can be solved and leads to the
well-known ICA algorithm (MacKay, 1996; Pearlmutter & Parra, 1997; Ol-
shausen & Field, 1997; Cardoso, 1997). But in the case of an overcomplete
basis, such a solution is not possible. Some recent approaches have tried
to approximate this integral by evaluating P(s)P(x|A, s) at its maximum
(Olshausen & Field, 1996, 1997), but this ignores the volume information
of the posterior. This means representations that are well determined, i.e.,
have a sharp posterior distribution) are treated in the same way as those
that are ill determined, which can introduce biases into the learning. An-
other problem is that this leads to a trivial solution where the magni-
tude of the basis functions diverge. This problem can be somewhat cir-
cumvented by adaptive normalization (Olshausen & Field, 1996), but set-
ting the adaptation rates can be tricky in practice, and, more important,
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there is no guarantee the desired objective function is the one being opti-
mized.

The approach we take here is to approximate equation 4.2 with a gaussian
around the posterior mode, ŝ. This yields

log P(x|A) ≈ L
2

log
λ

2π
+ M

2
log(2π)+ log P(ŝ)− λ

2
(x−Aŝ)2

− 1
2

log det H, (4.3)

where λ = 1/σ 2, and H is the Hessian of the log posterior at ŝ, H =
λATA − ∇s∇s log P(ŝ). This is a saddle-point approximation. (See appendix
for derivation details.) Care must be taken that the log prior has some cur-
vature, because det(ATA) = 0 arising from the fact that ATA has the same
rank as A, which is assumed to be rectangular. The accuracy of the saddle-
point approximation is determined by how closely the posterior mode can
be approximated by a gaussian. The approximation will be poor if there are
multiple modes or there is excessive skew or kurtosis. We present methods
for addressing some of these issues in section 6.1.

A learning rule is obtained by differentiating log P(x|A) with respect to
A (see the appendix), which leads to the following expression:

1A = AAT∇A log P(x|A) ≈ −A(zŝT + I), (4.4)

where zk = ∂ log P(sk)/∂sk. This rule contains no matrix inverses, and the
vector z involves only the derivative of the log prior.

In the case where A is square, this form of the rule is exactly the natural
gradient ICA learning rule for the basis matrix (Amari, Cichocki, & Yang,
1996). The difference in the more general case where A is rectangular is in
how the coefficients s are calculated. In the standard ICA learning algorithm
(A square, zero noise), the coefficients are given by s =Wx, where W = A−1

is the filter matrix. For the learning rule to work the optimization of s must
maximize the posterior distribution P(s|x,A) (see equation 2.3).

5 Examples

We now demonstrate the algorithm on two simple data sets. Figure 3 shows
the results of fitting two different two-dimensional data sets. The learn-
ing procedure was as follows. The initial bases were random normalized
vectors with the constraint that no two vectors be closer in angle than 30
degrees. Each basis was adapted to the data using the learning rule given
in equation 4.4. The bases were adapted with 50 iterations of simple gra-
dient descent with a batch size of 500 and a step size of 0.1 for the first 30
iterations, which was reduced to 0.001 over the last 20. The most prob-
able coefficients were obtained using a publicly available interior point
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Figure 3: Three examples illustrating the fitting of 2D distributions with over-
complete bases. The gray vectors show the true basis vectors used to generate
the distribution. The black vectors show the learned basis vectors. For clarity,
the vectors have been rescaled. The learned basis vectors can be antiparallel to
the true vectors, because both positive and negative coefficients are allowed.

linear programming package (Meszaros, 1997). Convergence of the learn-
ing algorithm was rapid, usually reaching the solution in fewer than 30
iterations. A solution was discarded if the magnitude of one of the basis
vector dropped to zero. This happened occasionally when one vector was
“trapped” between two others that were already representing the data in
that region.

The first example is shown in Figure 3a. The data were generated from
the true basis vectors (shown in gray) using x = As. To illustrate better the
arms of the distribution, the elements of s were drawn from an exponential
distribution (i.e., only positive coefficients) with unit mean. The direction
of the learned vectors always matched that of the true generating vectors.
The magnitude was smaller than the true basis vectors, possibly due to
the approximation used for P(x|A) (see equation 4.3). Identical results were
obtained when the coefficients were generated from a Laplacian prior (i.e.,
both positive and negative coefficients).

The second example (see Figure 3b) has four arms, again generated from
the true basis vectors using a Laplacian (both positive and negative coeffi-
cients) with unit variance. The learned vectors were close to the true vectors
but showed a consistent bias. This might occur because the data are too
dense for there to be any distinct direction or from the approximation to
P(x|A). The bias can be greatly reduced if the coefficients are drawn from
a distribution with greater sparsity. The example in Figure 3c uses a data
set from the same underlying vectors, but generated from a generalized
Laplacian distribution, P(sm) ∝ exp(−|sm|p). When this distribution is fit-
ted to wavelet subband coefficients of images, Buccigrossi and Simoncelli
(1997) found that p was in the range [0.5, 1.0]. Varying this exponent varies
the kurtosis of the distribution, which is one measure of a sparseness. In
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Figure 3c, the data were generated with p = 0.6. The arms of this data set
are more distinct, and the directions match those of the generating vectors.

6 Quantifying the Efficiency of the Representation

One advantage of the probabilistic framework is that it provides a natural
means for comparing objectively alternative representations and models. In
this section we compare two methods for comparing the coding efficiency
of the learned basis functions.

6.1 Estimating Coding Cost Using P(x|A) . The objective function P(x|A)
for the probability of the data under the model is a natural measure for
comparing different models. It is helpful to convert this value into a more
intuitive form. According to Shannon’s coding theorem, the probability of
a code word gives the lower bound on the length of that code word, under
the assumption that the model is correct. The number of bits required to
encode the pattern is given by

#bits ≥ − log2 P(x|A)− L log2(σx), (6.1)

where L is the dimensionality of the input pattern x, and σx specifies the
quantization level of the encoding.

6.1.1 A More Accurate Approximation to P(x|A). The learning algorithm
has been derived by making a gaussian approximation around the posterior
maximum ŝ. In practice this is sufficiently accurate to generate a useful gra-
dient for learning overcomplete bases. One caution, however, is that there
is not necessarily a relation between the local curvature and the volume for
general priors, as for a gaussian prior. When comparing alternative mod-
els or basis functions, we may want a more accurate approximation. One
approach that works well is a method based on second differences.

Rather than rely on the analytic Hessian to estimate the volume around
ŝ, the volume can be estimated directly by calculating the change in the
posterior, P(s)P(x|s,A) around the maximum ŝ using second differences.
Computing the entire Hessian in this manner would require O(M2) evalua-
tions of the posterior, which itself is an O(M2) operation. We can reduce the
number of posterior evaluations to O(M) if we estimate the curvature only
in the direction of the eigenvectors of the Hessian. To obtain an accurate
volume estimate, the volume of gaussian approximation should match as
closely as possible to the volume around the posterior maximum. This re-
quires a choice of the step size along the eigenvector direction. In principle,
this fit could be optimized, for example, by minimizing the cross entropy,
but at significant computational expense. A relatively quick and reliable
estimate can be obtained by choosing the step length, ηi, which produces a
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fixed drop, 1, in the value of the posterior log-likelihood,

ηi = argminηi

[
log P(ŝ|x,A)− log P(ŝ+ ηiei|x,A)−1] , (6.2)

where ηi is the step length along the direction of eigenvector ei. This method
of choosing ηi requires a line search, but this can typically be done with
three or four function evaluations. In the examples below, we used 1 =
3.8, the optimal value for approximating a Laplacian with a gaussian. This
procedure computes a new Hessian, Ĥ, which is a more accurate estimate
of the posterior curvature. The estimated Hessian is then substituted into
(equation 4.3) to obtain a more accurate estimate of log P(x|A).

Figure 4 shows cross-sections of the true posterior and the gaussian ap-
proximation using the direct Hessian and the second-differences method.
The direct Hessian method produced poor approximations in directions
where the curvature was sharp around the ŝ. Estimating the volume with
second differences produced a much better estimate along all of the eigen-
vector directions. There is no guarantee, however, that this is the best esti-
mate, because there could still exist some directions that are poorly approx-
imated. For example, the first plots in Figures 4a and 4b (labeled s − smp)
show the direction between ŝ using a convergence tolerance of 10−4 and ŝ
using a convergence tolerance of 10−6. This was the direction of the gradi-
ent when optimization was terminated and is likely to be in the direction
of coefficients whose values are poorly determined. The maximum has not
been reached, and the volume in this direction is underestimated. Overall,
however, the second-differences method produces a much more accurate
estimate of log P(x|A) than that using the analytic Hessian and obtains more
accurate estimates of the relative coding efficiencies of different models.

6.1.2 Application to Test Data. We now quantify the efficiency of differ-
ent representations for various test data sets using the methods described
above. The estimated coding cost was calculated from 10 sets of 1000 ran-
domly sampled data points using an encoding precision σx = 0.01. The
relative encoding efficiency of the different representations depends on the
relative difference of their predictions—how closely P(x|A)matches that of
the underlying distribution. If there is little difference between the predic-
tive distribution, then there will be little difference in the expected coding
cost.

Table 1 shows the estimated coding costs of various models for the data
sets used above. The uniform distribution gives an upper bound on the
coding cost by assuming equal probability for all points within the range
spanned by the data points. A simple bivariate gaussian model of the data
points, equivalent to a code based on the principal components of the data,
does significantly better.

The remaining table entries assume the model defined in equation 2.1
with a Laplacian prior on the basis coefficients. The 2 × 2 basis matrix is
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Figure 4: The solid lines in the figure show the cross-sections of a 128-
dimensional posterior distribution (P(s|x,A) along the directions of the eigen-
vectors of the Hessian matrix evaluated at ŝ (see equation 2.3). This posterior
resulted from fitting a 2×-overcomplete representation to a 64-sample segment
of natural speech (see section 7). The first cross-section is in the direction be-
tween ŝ using a tolerance of 10−4 and a more probable ŝ found using a tolerance
of 10−6 (labeled s− smp). The remaining cross-sections are in order of the eigen-
values, showing a sample from smallest (e128) to largest (e1). The dots show the
gaussian approximation for the same cross-section. The+ indicates the position
of ŝ. Note that the x-axes have different scales. (a) The gaussian approxima-
tion obtained using the analytic Hessian to estimate the curvature. (b) The same
cross-sections but with the gaussian approximation calculated using the second-
difference method described in the text.

equivalent to the ICA solution (under the assumption of a Laplacian prior).
The 2×3 and 2×4 matrices are overcomplete representations. All bases were
learned with the methods discussed above. The most probable coefficients
were calculated using the linear programming method as was done during
learning.

Table 1 shows that the coding efficiency estimates obtained using the
approximation to P(x|A) are reasonably accurate compared to the estimated
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Table 1: Estimated Coding Costs using P(x|A).

Bits per Pattern

Model Figure 1a Figure 3a Figure 3b Figure 3c

uniform 22.31± 0.17 21.65± 0.19 21.57± 0.16 26.67± 0.31
Gaussian 18.96± 0.06 17.98± 0.07 18.55± 0.06 22.12± 0.15
A2×2 (ICA) 18.84± 0.04 17.79± 0.07 18.38± 0.05 21.46± 0.08
A2×3 18.59± 0.03 16.87± 0.06 18.04± 0.04 21.12± 0.08
A2×4 — — 18.15± 0.08 21.24± 0.08

bits per pattern for the uniform and gaussian models for which the expected
coding costs are exact. Apart from the uniform model, the differences in the
predicted densities are rather subtle and do not show any large differences
in coding costs. This would be expected because the densities predicted by
the various models are similar. For all the data sets, using a three-vector
basis (A2×3) gives greater expected coding efficiencies, which indicates that
higher degrees of overcompleteness can yield more efficient coding. For
the four-vector basis (A2×4), there is no further improvement in coding
efficiency. This reflects the fact that when the prior distribution is limited
to a Laplacian, there is an inherent limitation on the model’s degrees of
freedom; increasing the number of basis functions does not always increase
the space of distributions that can be modeled.

6.2 Estimating Coding Cost Using Coefficient Entropy. The probability
of the data gives a lower bound on code length but does not specify a code.
An alternative method for estimating the coding efficiency is to estimate the
entropy of a proposed code. For these models, a natural choice for the code is
the vector coefficients, s. In this approach, the distribution of the coefficients
s (fit to a training data set) is estimated with a function f (s). The coding cost
for a test data set is computed estimating the entropy of the fitted coefficients
to a quantization level needed to maintain an encoding noise level of σx.
This has the advantage that f (s) can give a better approximation to the
observed distribution of s (better than the Laplacian assumed under the
model). In the examples below, we assume that all the coefficients have the
same distribution, although it is straightforward to use a separate function
for the distribution estimate of each coefficient. One note of caution with
this technique, however, is that it does not include any cost of misfitting. A
basis that does not fully span the data space will result in poor fits to the
data but can still yield low entropy. If the bases under consideration fully
span the data space, then the entropy will yield a reasonable estimate of
coding cost.

To compute the entropy, the precision to which each coefficient is en-
coded needs to be specified. Ideally, f (s) should be quantized to maintain
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an encoding noise level of σx. In the examples below, we use the approxi-
mation δsi ≈ σx/|Ai|. This relates a change in si to a change in the data xi and
is exact if A is orthogonal. We use the mean value of δsi to obtain a single
quantization level δs for all coefficients. The function f (s) by applying ker-
nel density estimation (Silverman, 1986) to the distribution of coefficients
fit to a training data set. We use a Laplacian kernel with a window width
of 2δs.

The most straightforward method of estimating the coding cost (in bits
per pattern) is to sum over the individual entropies,

#bits ≥ −
∑

i

ni

N
log2 f [i], (6.3)

where f (s) is quantized as f [i], the index i ranges over all the bins in the
quantization, and ni is the number of counts observed in each bin for each of
the coefficients fit to a test data set consisting of N patterns. The distinction
between the test and training data set is necessary because the probabilities
of the code words need to be specified a priori. Using the same data set for
test and training underestimates the cost, although for large data sets, the
difference is minimal.

An alternative method of computing the coding cost using the entropy
is to make use of the fact that for sparse-overcomplete representations, a
subset of the coefficients will be zero. The coding cost can be computed by
summing the entropy of the nonzero coefficients plus the cost of identifying
them,

#bits ≥ −
∑

i

ni

N
log2 fnz[i]+min(M− L,L) log2(M) , (6.4)

where fnz[i] is the quantized density estimate of the nonzero coefficients in
the ith bin and the index i ranges over all the bins. This method is appropriate
when the cost of identifying the nonzero coefficients is small compared to
the cost of sending M− L (zero-valued) coefficients.

6.2.1 Application to Test Data. We now quantify the efficiency of various
representations for the data sets shown in Figure 3 by computing the entropy
of the coefficients. As before, the estimated coding cost was calculated on
1000 randomly sampled data points, using an encoding precision of 0.01.
A separate training data set consisting of 10,000 data points was used to
estimate the distribution of the coefficients. The entropy was estimated by
computing the entropy of the nonzero coefficients (see equation 6.4), which
yielded lower estimated coding costs for the overcomplete bases compared
to summing the individual entropies (see equation 6.3).

Table 2 shows the estimated coding costs for the same learned bases and
data sets used in Table 1. The second column lists the cost of labeling the
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Table 2: Estimated Entropy of Nonzero Coefficients.

Bits per Pattern
Labeling

Model Cost Figure 1a Figure 3a Figure 3b Figure 3c

A2×2 0.0 18.88± 0.04 17.78± 0.07 18.18± 0.05 21.45± 0.09
A2×3 1.6 18.02± 0.03 17.28± 0.05 17.75± 0.05 20.95± 0.08
A2×4 2.0 — — 17.88± 0.07 20.81± 0.09

nonzero coefficients. The other columns list the coding cost for the values
of the nonzero coefficients. The total coding cost is the sum of these two
numbers. For the 2 × 2 matrices (the ICA solution), the entropy estimate
yields approximately the same coding cost as the estimate based on P(x|A),
which indicates that in the complete case, the computation of P(x|A) is
accurate.

This entropy estimate, however, yields a higher coding for the overcom-
plete bases. The coding cost computed from P(x|A) suggests that lower
average coding costs are achievable. One strategy for lowering the average
coding cost would be to avoid identifying the nonzero coefficients for every
pattern, for example, by grouping patterns that share common nonzero co-
efficients. This illustrates the advantages of contrasting the minimal coding
cost estimated from the probability with that of a particular code.

7 Learning Sparse Representations of Speech

Speech data were obtained from the TIMIT database, using speech a single
speaker, speaking 10 different example sentences. Speech segments were
64 samples in duration (8 msecs at the sampling frequency of 8000 Hz).
No preprocessing was done. Both a complete (1×-overcomplete or 64 basis
vectors) and a 2×-overcomplete basis (128 basis vectors) were learned. The
bases were initialized to the standard Fourier basis and a 2×-overcomplete
Fourier basis, which was composed of twice the number of sine and cosine
basis functions, linearly spaced in frequency over the Nyquist range.

For larger problems, it is desirable to make the learning faster. Some
simple modifications to the basic gradient descent procedure were used
that produced more rapid and reliable convergence. For each gradient (see
equation A.33), a step size was computed by δi = εi/amax, where amax is the
element of the basis matrix, A, with largest absolute value. The parameter
ε was reduced from 0.02r to 0.001r over the first 1000 iterations and fixed at
0.001r for the remaining iterations, where r is a measure of the data range
and was defined to be the standard deviation of the data.

For the learning rule, we replaced the term A in equation A.39 with an
approximation to λAATAH−1 (see equation A.36) as suggested in Lewicki
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a b

Figure 5: An example of fitting a 2×-overcomplete representation to segments
of natural speech. Speech segments consisted of 64 samples in duration (8 msecs
at the sampling frequency of 8000 Hz). (a) A random sample of 30 of the 128
basis vectors (each scaled to full range). (b) The power spectral densities (0 to
4000 Hz) of the corresponding basis in a.

and Olshausen (1998, 1999):

−λATAH−1 ≈ I− BQ diag−1[V+QTBQ]QT, (7.1)

where B = ∇s∇s log P(ŝ) and Q and V are obtained from the singular value
decomposition λATA = QVQT. This yielded solutions similar to equa-
tion 4.4, but resulted in fewer zero-length basis vectors. One hundred pat-
terns were used to estimate each learning step. Learning was terminated
after 5000 steps.

The most probable basis function coefficients, ŝ, were obtained using a
modified conjugate gradient routine (Press, Teukolsky, Vetterling, & Flan-
nery, 1992). The basic routine was modified to replace the line search with
an approximate Newton step. This approach resulted in a substantial speed
improvement and produced much better solutions in a fixed amount of time
than the standard routine. To improve speed, a convergence criterion in the
conjugate gradient routine was started at value of 10−2 and reduced to 10−3

over the course of learning.
Figure 5 shows a sample of the learned basis vectors from the

2×-overcomplete basis. The waveforms in Figure 5a show a random sample
of the learned basis vectors; the corresponding power spectral densities (0–
4000 Hz) are shown in Figure 5b. An immediate observation is that, unlike
the Fourier basis vectors, many of the learned basis vectors have a broad
bandwidth, and some have multiple spectral peaks. This is an indication that
the basis functions contain some of the broadband and harmonic structure
inherent in the speech signal.

Another way of contrasting the learned representation with the Fourier
representation is shown in Figure 6. This shows the log-coefficient magni-
tudes over the duration of a speech sentence taken from the TIMIT database
for the 2×-overcomplete Fourier (middle plot) and 2×-overcomplete learned
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Figure 6: Comparison of coefficient values over the duration of a speech sample
from the TIMIT database. (Top) The amplitude envelope of a sentence of speech.
The vertical lines are a rough indication of the word boundaries, as listed in the
database. (Middle) Plots the log-coefficient magnitudes for a 2×-overcomplete
Fourier basis over the duration of the speech example, using nonoverlapping
blocks of 64 samples without windowing. (Bottom) Shows the log-coefficient
magnitudes for a 2×-overcomplete learned basis. Only the largest 10% of the
coefficients (in terms of magnitude) are plotted. The basis vectors are ordered
in terms of their power spectra, with higher frequencies toward the top.

representations (bottom plot). The middle plot is similar to a standard spec-
trogram except that no windowing was performed and the windows were
not overlapping.

Figure 6 shows that the coefficient values for the learned basis are used
much more uniformly than in the Fourier basis. This is consistent with the
learning objective, which optimizes the basis vectors to make the coefficient
values as independent as possible. One consequence is that the correla-
tions across frequency that exist in the Fourier representation (reflecting the
harmonic structure in the speech) are less apparent in the learned represen-
tation.

7.1 Comparing Efficiencies of Representations. Table 3 shows the esti-
mated number of bits per sample to encode a speech segment to a precision
of 1 bit out of 8 (σx = 1/256 of the amplitude range). The table shows the
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Table 3: Estimated Bits per Sample for Speech Data.

Estimation Method

Basis − log2 P(x|bA)− L log2(σx) Total Entropy Nonzero Entropy

1× learned 4.17± 0.07 3.40± 0.05 3.36± 0.08
1× Fourier 5.39± 0.03 4.29± 0.07 4.24± 0.09
2× learned 5.85± 0.06 5.22± 0.04 3.07± 0.07
2× Fourier 6.87± 0.06 6.57± 0.14 4.12± 0.11

estimated coding costs using the probability of the data (see equation 6.1)
and using the entropy, computed by summing the individual entropy esti-
mates of all coefficients (see equation 6.3) (total). Also shown is the entropy
of only the nonzero coefficients. By both estimates, the complete and the
2×-overcomplete learned basis perform significantly better than the corre-
sponding Fourier basis. This is not surprising given the observed redun-
dancy in the Fourier representation (see Figure 6).

For all of the bases, the coding cost estimates derived from the entropy of
the coefficients are lower than those derived from P(x|A). A possible reason
is that the coefficients are sparser than the Laplacian prior assumed by the
model. This is supported by looking at the histogram of the coefficients (see
Figure 7), which shows a density with kurtosis much higher than the as-
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Figure 7: Distribution of basis function coefficients for the 2× learned and
Fourier bases. Note the log scale on the y-axis.
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sumed Laplacian. The entropy method can obtain a lower estimate, because
it fits the observed density of s.

The last column in the table shows that although the entropy per coeffi-
cient of the 2×-overcomplete bases is less than for the complete bases, nei-
ther basis yields an overall improvement in coding efficiency. There could
be several reasons for this. One likely reason is due to the independence
assumption of the model (P(s) = ∏m P(sm)). This assumes that there is no
structure among the learned basis vectors. From Figure 6, however, it is
apparent that there is considerably more structure left in the values of ba-
sis vector coefficients. Possible generalizations for capturing this kind of
structure are discussed below.

8 Discussion

We have presented an algorithm for learning overcomplete bases. In some
cases, overcomplete representations allow a basis to approximate better the
underlying statistical density of the data, which can lead to representations
that better capture the underlying structure in the data and have greater cod-
ing efficiency. The probabilistic formulation of the basis inference problem
offers the advantages that assumptions about the prior distribution on the
basis coefficients are made explicit. Moreover, by estimating the probability
of the data given the model or the entropy of the basis function coefficients,
different models can be compared objectively.

This algorithm generalizes ICA so that the model accounts for additive
noise and allows the basis to be overcomplete. Unlike standard ICA, where
the internal states are computed by inverting the basis function matrix, in
this model the transformation from the data to the internal representation is
nonlinear. This occurs because when the model is generalized to account for
additive noise or when the basis is allowed to be overcomplete, the internal
representation is ambiguous. The internal representation is then obtained
by maximizing the posterior probability of s given the assumptions of the
model, which is, in general, a nonlinear operation.

A further advantage of this formulation is that it is possible to “denoise”
the data. The inference procedure of finding the most probable coefficients
automatically separates the data into the underlying signal and the additive
noise. By setting the noise to appropriate levels, the model specifies what
structure in the data should be ignored and what structure should be mod-
eled by the basis functions. The derivation given here also allows the noise
level to be set to zero. In this case, the model attempts to account for all
of the variability in the data. This approach to denoising has been applied
successfully to natural images (Lewicki & Olshausen, 1998, 1999).

Another potential application is the blind separation of more sources
than mixtures. For example, the two-dimensional examples in Figure 3 can
be viewed as a source separation problem in which a number of sources
are mixed onto a smaller number of channels (three to two in Figure 3a and
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four to two in Figures 3b and 3c). The overcomplete bases allow the model
to capture the underlying statistical structure in the data space. True source
separation will be limited, however, because the sources are being mapped
down to a smaller subspace and there is necessarily a loss of information.
Nonetheless, is it possible to separate three speakers on two channels with
good fidelity (Lee, Lewicki, Girolami, & Sejnowski, 1999).

We have also shown, in the case of natural speech, that learned bases have
better coding properties than commonly used representations such as the
Fourier basis. In these examples, the learned basis resulted in an estimated
coding efficiency for (near-lossless compression) that was about 1.4 bits
per sample better than the Fourier basis. This reflects the fact that spectral
representations of speech are redundant, because of spectral structures such
as speaker harmonics. In the complete case, the model is equivalent to ICA,
but with additive noise. We emphasize that these numbers reflect only a very
simple coding scheme based on 64 sample speech segments. Other coding
schemes can achieve much greater compression. The analysis presented
here serves only to compare the relative efficiency of a code based on Fourier
representation with that of a learned representation.

The learned overcomplete representations also showed greater coding
efficiency than the overcomplete Fourier representation but did not show
greater coding efficiency than the complete representation. One possible
reason is that the approximations are inaccurate. The approximation used
to estimate the probability of the data (see equation 4.2) works well for
learning the basis functions and also gives reasonable estimates when ex-
act quantities are available. However, it is possible that the approximation
becomes increasingly inaccurate for higher degrees of overcompleteness.
An open challenge for this and other inference problems is how to obtain
accurate and computationally tractable approximations to the data proba-
bility.

Another, perhaps more plausible, reason for the lack of coding efficiency
for the overcomplete representations is that the assumptions of the model
are inaccurate. An obvious one is the prior distribution for the coefficients.
For example, the observed coefficient distribution for the speech data (see
Figure 7) is much sparser than that of the Laplacian assumed by the model.
Generalizing these models so that P(s) better captures the kind of structure
would improve the accuracy of the model and allow it to fit a broader range
of distributions. Generalizing these techniques to handle more general prior
distributions, however, is not straightforward because of the difficulties in
optimization techniques for finding the most probable coefficients and the
approximation of the data probability, log P(x|A). These are directions we
are currently investigating.

We need to question the fundamental assumption that the coefficients
are statistically independent. This is not true for structures such as speech,
where there is a high degree of nonstationary statistical structure. This type
of structure is clearly visible in the spectrogram-like plots in Figure 6. Be-
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cause the coefficients are assumed to be independent, it is not possible to
capture mutually exclusive relationships that might exist among different
speech sounds. For example, different bases could be specialized for differ-
ent types of phonemes. Capturing this type of structure requires general-
izing the model so that it can represent and learn higher-order structure.
In applications of overcomplete representations, it is common to assume
the coefficients are independent and have Laplacian distributions (Mallat &
Zhang, 1993; Chen et al., 1996). These results show that although overcom-
plete representations can potentially yield many benefits, in practice these
can be limited by inaccurate prior assumptions. An improved model of the
data distribution will lead to greater coding efficiency and also allow for
more accurate inference. The Bayesian framework presented in this article
provides a direct method for evaluating the validity of these assumptions
and also suggests ways in which these models might be generalized.

Finally, the approach taken here to overcomplete representation may also
be useful for understanding the nature of neural codes in the cerebral cortex.
One million ganglion cells in the optic nerve are represented by 100 million
cells in the primary visual cortex of the monkey. Thus, it is possible that at
the first stage of cortical processing, the visual world is overrepresented by
a large factor.

Appendix

A.1 Approximating P(x|A). The integral

P(x|A) =
∫

ds P(s)P(x|s,A) (A.1)

can be approximated with the gaussian integral,∫
ds f (s) ≈ f (ŝ)(2π)k/2| − ∇s∇s log f (s)|−1/2, (A.2)

where | · | indicates the determinant and ∇s∇s indicates the Hessian, which
is evaluated at the solution ŝ (see equation 2.3). Using f (s) = P(s)P(x|s,A)
we have

−∇s∇s
[
log P(s)P(x|s,A)

] = H(s)

= −∇s∇s

[
−λ

2
(x−As)2 + log P(s)

]
(A.3)

= ∇s

[
−λAT(x−As)−∇sP(s)

]
(A.4)

= λATA−∇s∇sP(s). (A.5)
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A.2 The Hessian of the Laplacian. In the case of a Laplacian prior on
sm,

log P(s) ≡
∑

m
log P(sm) = M log θ − θ

M∑
m=1

|sm|. (A.6)

Because log P(s) is piece-wise linear in s, the curvature is zero, and there
is a discontinuity in the derivative at zero. To approximate the volume
contribution from P(s), we use

∂

∂sm
log P(s) ≈ −θ tanh(βsm), (A.7)

which is equivalent to using the approximation P(sm) ∝ cosh−θ/β(βsm). For
large β this approximates the true Laplacian prior while staying smooth
around zero. This leads to the following diagonal expression for the Hessian:

∂2

∂s2
m

log P(sm) = −θβ sech2(βsm). (A.8)

A.3 Derivation of the Learning Rule. For a set of independent data
vectors X = x1, . . . , xK, expand the posterior probability density by a saddle-
point approximation:

log P(X|A) = log
∏

k

P(xk|A)

≈ KL
2

log
λ

2π
+ KM

2
log(2π) (A.9)

+
K∑

k=1

[
log P(ŝk)− λ2 (xk −Aŝk)

2 − 1
2

log det H(ŝk)

]
.

A learning rule can be obtained by differentiating log P(x|A)with respect
to A. Letting ∇A = ∂/∂A and for clarity letting H = H(s), we see that there
are three main derivatives that need to be considered:

∇A log P(x|A) = ∇A log P(ŝ)− λ
2
∇A(x−Aŝ)2 − 1

2
∇A log det H. (A.10)

We consider each in turn.

A.3.1 Deriving ∇A log P(ŝ). The first term in the learning rule specifies
how to change A to make the representation ŝ more probable. If we assume
a prior distribution with high kurtosis, this component will change the
weights to make the representation sparser.
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From the chain rule,

∂ log P(ŝ)
∂A

=
∑

m

∂ log P(ŝm)

∂ ŝm

∂ ŝm

∂A
, (A.11)

assuming P(ŝ) = ∏
m P(ŝm). To obtain ∂ ŝm/∂A, we need to describe ŝ as a

function of A. If the basis is complete (and we assume low noise), then we
can simply invert A to obtain ŝ = A−1x. When A is overcomplete, however,
there is no simple expression, but we can still make an approximation.

For certain priors, the most probable solution, ŝ, will yield at most L
nonzero elements. In effect, the procedure for computing ŝ selects a complete
basis from A that best accounts for the data x. We can use this hypothetical
reduced basis to derive a learning algorithm for the full basis matrix A.
Let Ǎ represent a reduced basis for a particular x, that is, Ǎ is composed
of the basis vectors in A that have nonzero coefficients. More precisely, let
c1, . . . , cL be the indices of the nonzero coefficients in ŝ. If there are fewer than
L nonzero coefficients, zero-valued coefficients can be included without loss
of generality. Then, Ǎ1:L,i ≡ A1:L,ci . We then have

š = Ǎ−1(x− ε), (A.12)

where š is equal to ŝ with M−L zero-valued elements removed. Ǎ−1 obtained
by removing the columns of A corresponding to the M − L zero-valued
elements of ŝ. This allows the use of results obtained for the case when
A is invertible. Note that the construction of the reduced basis is only a
mathematical device used for this derivation. The final gradient equation
does not depend on this construction. Following MacKay (1996) we have

∂ šk

∂ ǎij
= ∂

∂ ǎij

∑
l

Ǎ−1
kl (xl − εl), (A.13)

Using the identity ∂A−1
kl /∂aij = −A−1

ki A−1
jl ,

∂ šk

∂ ǎij
= −

∑
l

Ǎ−1
ki Ǎ−1

jl (xl − εl). (A.14)

= −Ǎ−1
ki šj. (A.15)

Letting žk = ∂ log P(šk)/∂ šk,

∂ log P(š)
∂ ǎij

= −
∑

k

žkǍ−1
ki šj. (A.16)

Changing back to matrix notation,

∂ log P(š)

∂Ǎ
= −Ǎ−TžšT. (A.17)
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This derivative can be expressed in terms of the original variables (that is,
nonreduced). We invert the mapping used to obtain the reduced coefficients,
ŝ → š. We have zcm = žm, with the remaining (M − L) values of z defined
to be zero. We define the matrix W1:L,ci ≡ Ǎ−1

1:L,i, with the remaining rows
equal to zero. Then

∂ log P(s)
∂A

= −WTzsT. (A.18)

This gives a gradient of zero for the columns of A that have zero-valued
coefficients.

A.3.2 Deriving ∇A(x − Aŝ)2. The second term specifies how to change
A to minimize the data misfit. Letting ek = [x − As]k and using the results
and notation from above:

∂

∂aij

λ

2

∑
k

e2
k = λeisj + λ

∑
k

ek

∑
l

akl
∂sl

∂aij
(A.19)

= λeisj + λ
∑

k

ek

∑
l

−aklwlisj (A.20)

= λeisj − λeisj = 0. (A.21)

Thus, there is no gradient component arising from the error term that might
be expected if the residual error has no structure.

A.3.3 Deriving ∇A log det H. The third term in the learning rule spec-
ifies how to change the weights to minimize the width of the posterior
distribution P(x|A) and thus increase the overall probability of the data.

Using the chain rule,

∂ log det H
∂aij

= 1
det H

∑
mn

∂ det H
∂Hmn

∂Hmn

∂aij
. (A.22)

An element of H is defined by

Hmn =
∑

k

λakmakn + bmn (A.23)

= cmn + bmn, (A.24)

where bmn = (−∇s∇s log P(ŝ))mn. Using the identity ∂ det H/∂Hmn =
(det H)H−1

nm we obtain

∂ log det H
∂aij

=
∑
mn

H−1
nm

[
∂cmn

∂aij
+ ∂bmn

∂aij

]
. (A.25)
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Considering the first term in the square brackets,

∂cmn

∂aij
=


0 m,n 6= j,
λain m = j,
λaim n = j,
2λaij m = n = j.

(A.26)

We then have

∑
mn

H−1
mn
∂cmn

∂aij
=
∑
m6=j

H−1
mj λaim +

∑
m6=j

H−1
jm λaim +H−1

jj 2λaij (A.27)

= 2λ
∑

m
H−1

mj aim, (A.28)

using the fact that H−1
mj = H−1

jm due to the symmetry of the Hessian. In matrix
notation this becomes

∑
mn

H−1
mn
∂cmn

∂A
= 2λAH−1. (A.29)

Next we derive ∂bmm/∂aij. Assuming P(ŝ) = ∏
m P(ŝm) we have that

∇s∇s log P(ŝ) is diagonal and thus

∑
mn

H−1
nm
∂bmn

∂aij
=
∑

m
H−1

mm
∂bmm

∂ ŝm

∂ ŝm

∂aij
. (A.30)

Letting 2ym = H−1
mm∂bmm/∂ ŝm and using the result under the reduced repre-

sentation (see equation A.15),

∑
mm

H−1
mm
∂bmm

∂A
= −2WTyŝT. (A.31)

Finally, putting the results for ∂cmm/∂A and ∂bmm/∂A back into equation A.25,

∂ log det H
∂A

= 2λAH−1 − 2WTyŝT. (A.32)

Gathering the three components of ∇A log P(x|A) together yields the fol-
lowing expression for the learning rule:

∇A log P(x|A) = −WTzŝT − λAH−1 +WTyŝT. (A.33)
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A.3.4 Stabilizing and Simplifying the Learning Rule. Using the gradient
given in equation A.33 directly is problematic due to the matrix inverses,
which make it both impractical and unstable. This can be alleviated, how-
ever, by multiplying the gradient by an appropriate positive definite matrix
(Amari et al., 1996). This rescales the components of the gradient but still
preserves a direction valid for optimization. The fact that ATWT = I for all
W allows us to eliminate W from the equation for the learning rule:

AAT∇A log P(x|A) = −AzŝT − λAATAH−1 +AyŝT. (A.34)

Additional simplifications can be made. If λ is large (low noise), then the
Hessian is dominated by λATA and

−λAATAH−1 = −AλATA(λATA+ B)−1 (A.35)

≈ −A. (A.36)

It is also possible to obtain more accurate approximations of this term
(Lewicki & Olshausen, 1998, 1999).

The vector y hides a computation involving the inverse Hessian. If the
basis vectors in A are randomly distributed, then as the dimensionality
of A increases, the basis vectors become approximately orthogonal, and
consequently the Hessian becomes approximately diagonal. In this case,

ym ≈ 1
Hmm

∂bmm

∂ ŝm
(A.37)

= ∂bmm/∂ ŝm

λ
∑

k a2
km + bmm

. (A.38)

Thus if log P(s) and its derivatives are smooth, ym vanishes for large λ. In
practice, excluding y from the learning rule yields more stable learning.
We conjecture that this term can be ignored, possibly because it represents
curvature components that are unrelated to the volume.

We thus obtain the following expression for a learning rule:

1A = AAT∇A log P(x|A) ≈ −AzŝT −A (A.39)

= −A(zŝT + I). (A.40)
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